Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0349422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036346

RESUMO

Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. The pathogenesis of MVD remains poorly understood, partially due to the low number of cases that can be studied, the absence of state-of-the-art medical equipment in areas where cases are reported, and limitations on the number of animals that can be safely used in experimental studies under maximum containment animal biosafety level 4 conditions. Medical imaging modalities, such as whole-body computed tomography (CT), may help to describe disease progression in vivo, potentially replacing ethically contentious and logistically challenging serial euthanasia studies. Towards this vision, we performed a pilot study, during which we acquired whole-body CT images of 6 rhesus monkeys before and 7 to 9 days after intramuscular MARV exposure. We identified imaging abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to clinical, virological, and gross pathological hallmarks of MVD in this animal model. Quantitative image analysis indicated hepatomegaly with a significant reduction in organ density (indicating fatty infiltration of the liver), splenomegaly, and edema that corresponded with gross pathological and histopathological findings. Our results indicated that CT imaging could be used to verify and quantify typical MVD pathogenesis versus altered, diminished, or absent disease severity or progression in the presence of candidate medical countermeasures, thus possibly reducing the number of animals needed and eliminating serial euthanasia. IMPORTANCE Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. Much is unknown about disease progression and, thus, prevention and treatment options are limited. Medical imaging modalities, such as whole-body computed tomography (CT), have the potential to improve understanding of MVD pathogenesis. Our study used CT to identify abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to known clinical signs of MVD in this animal model. Our results indicated that CT imaging and analyses could be used to elucidate pathogenesis and possibly assess the efficacy of candidate treatments.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Humanos , Animais , Doença do Vírus de Marburg/diagnóstico por imagem , Doença do Vírus de Marburg/patologia , Projetos Piloto , Tomografia Computadorizada por Raios X , Progressão da Doença , Primatas
2.
Antiviral Res ; 214: 105605, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37068595

RESUMO

This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.


Assuntos
COVID-19 , Pneumonia , Humanos , Animais , Cricetinae , COVID-19/diagnóstico por imagem , SARS-CoV-2 , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Enzima de Conversão de Angiotensina 2 , Tomografia por Emissão de Pósitrons , Mesocricetus , Progressão da Doença
3.
Viruses ; 14(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36423101

RESUMO

Positron emission tomography (PET) is becoming an important tool for the investigation of emerging infectious diseases in animal models. Usually, PET imaging is performed after intravenous (IV) radiotracer administration. However, IV injections are difficult to perform in some small animals, such as golden hamsters. This challenge is particularly evident in longitudinal imaging studies, and even more so in maximum containment settings used to study high-consequence pathogens. We propose the use of intramuscular (IM) administration of 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) for PET imaging of hamsters in a biosafety level 4 (BSL-4) laboratory setting. After [18F]F-FDG administration via IM or IV (through surgically implanted vascular access ports), eight hamsters underwent static or dynamic PET scans. Time-activity curves (TACs) and standardized uptake values (SUVs) in major regions of interest (ROIs) were used to compare the two injection routes. Immediately after injection, TACs differed between the two routes. At 60 min post-injection, [18F]F-FDG activity for both routes reached a plateau in most ROIs except the brain, with higher accumulation in the liver, lungs, brain, and nasal cavities observed in the IM group. IM delivery of [18F]F-FDG is an easy, safe, and reliable alternative for longitudinal PET imaging of hamsters in a BSL-4 laboratory setting.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Animais , Cricetinae , Mesocricetus , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Glucose
4.
Int J Comput Assist Radiol Surg ; 15(10): 1631-1638, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32648161

RESUMO

PURPOSE: Certain viral infectious diseases cause systemic damage and the liver is an important organ affected directly by the virus and/or the hosts' response to the virus. Medical imaging indicates that the liver damage is heterogenous, and therefore, quantification of these changes requires analysis of the entire organ. Delineating the liver in preclinical imaging studies is a time-consuming and difficult task that would benefit from automated liver segmentation. METHODS: A nonhuman primate atlas-based liver segmentation method was developed to support quantitative image analysis of preclinical research. A set of 82 computed tomography (CT) scans of nonhuman primates with associated manual contours delineating the liver was generated from normal and abnormal livers. The proposed technique uses rigid and deformable registrations, a majority vote algorithm, and image post-processing operations to automate the liver segmentation process. This technique was evaluated using Dice similarity, Hausdorff distance measures, and Bland-Altman plots. RESULTS: Automated segmentation results compare favorably with manual contouring, achieving a median Dice score of 0.91. Limits of agreement from Bland-Altman plots indicate that liver changes of 3 Hounsfield units (CT) and 0.4 SUVmean (positron emission tomography) are detectable using our automated method of segmentation, which are substantially less than changes observed in the host response to these viral infectious diseases. CONCLUSION: The proposed atlas-based liver segmentation technique is generalizable to various sizes and species of nonhuman primates and facilitates preclinical infectious disease research studies. While the image analysis software used is commercially available and facilities with funding can access the software to perform similar nonhuman primate liver quantitative analyses, the approach can be implemented in open-source frameworks as there is nothing proprietary about these methods.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Hepatopatias/diagnóstico por imagem , Fígado/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Tomografia por Emissão de Pósitrons , Primatas , Pesquisa , Software
5.
bioRxiv ; 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32511338

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing an exponentially increasing number of coronavirus disease 19 (COVID-19) cases globally. Prioritization of medical countermeasures for evaluation in randomized clinical trials is critically hindered by the lack of COVID-19 animal models that enable accurate, quantifiable, and reproducible measurement of COVID-19 pulmonary disease free from observer bias. We first used serial computed tomography (CT) to demonstrate that bilateral intrabronchial instillation of SARS-CoV-2 into crab-eating macaques (Macaca fascicularis) results in mild-to-moderate lung abnormalities qualitatively characteristic of subclinical or mild-to-moderate COVID-19 (e.g., ground-glass opacities with or without reticulation, paving, or alveolar consolidation, peri-bronchial thickening, linear opacities) at typical locations (peripheral>central, posterior and dependent, bilateral, multi-lobar). We then used positron emission tomography (PET) analysis to demonstrate increased FDG uptake in the CT-defined lung abnormalities and regional lymph nodes. PET/CT imaging findings appeared in all macaques as early as 2 days post-exposure, variably progressed, and subsequently resolved by 6-12 days post-exposure. Finally, we applied operator-independent, semi-automatic quantification of the volume and radiodensity of CT abnormalities as a possible primary endpoint for immediate and objective efficacy testing of candidate medical countermeasures.

6.
mSphere ; 3(6)2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541777

RESUMO

Single photon emission computed tomography (SPECT) is frequently used in oncology and cardiology to evaluate disease progression and/or treatment efficacy. Such technology allows for real-time evaluation of disease progression and when applied to studying infectious diseases may provide insight into pathogenesis. Insertion of a SPECT-compatible reporter gene into a virus may provide insight into mechanisms of pathogenesis and viral tropism. The human sodium iodide symporter (hNIS), a SPECT and positron emission tomography reporter gene, was inserted into Middle East respiratory syndrome coronavirus (MERS-CoV), a recently emerged virus that can cause severe respiratory disease and death in afflicted humans to obtain a quantifiable and sensitive marker for viral replication to further MERS-CoV animal model development. The recombinant virus was evaluated for fitness, stability, and reporter gene functionality. The recombinant and parental viruses demonstrated equal fitness in terms of peak titer and replication kinetics, were stable for up to six in vitro passages, and were functional. Further in vivo evaluation indicated variable stability, but resolution limits hampered in vivo functional evaluation. These data support the further development of hNIS for monitoring infection in animal models of viral disease.IMPORTANCE Advanced medical imaging such as single photon emission computed tomography with computed tomography (SPECT/CT) enhances fields such as oncology and cardiology. Application of SPECT/CT, magnetic resonance imaging, and positron emission tomography to infectious disease may enhance pathogenesis studies and provide alternate biomarkers of disease progression. The experiments described in this article focus on insertion of a SPECT/CT-compatible reporter gene into MERS-CoV to demonstrate that a functional SPECT/CT reporter gene can be inserted into a virus.


Assuntos
Infecções por Coronavirus/patologia , Genes Reporter , Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Simportadores/metabolismo , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Instabilidade Genômica , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Mutagênese Insercional , Simportadores/genética , Células Vero
7.
Sci Rep ; 8(1): 10727, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013082

RESUMO

The recurrence of new human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) underscores the need for effective therapeutic countermeasures. Nonhuman primate models are considered the gold standard for preclinical evaluation of therapeutic countermeasures. However, MERS-CoV-induced severe respiratory disease in humans is associated with high viral loads in the lower respiratory tract, which may be difficult to achieve in nonhuman primate models. Considering this limitation, we wanted to ascertain the effectiveness of using a MERS-CoV infectious clone (icMERS-0) previously shown to replicate to higher titers than the wild-type EMC 2012 strain. We observed respiratory disease resulting from exposure to the icMERS-0 strain as measured by CT in rhesus monkeys with concomitant detection of virus antigen by immunohistochemistry. Overall, respiratory disease was mild and transient, resolving by day 30 post-infection. Although pulmonary disease was mild, these results demonstrate for the first time the utility of CT imaging to measure disease elicited by a MERS-CoV infectious clone system in nonhuman primate models.


Assuntos
Infecções por Coronavirus/diagnóstico , Pulmão/diagnóstico por imagem , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Animais , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , RNA Viral/isolamento & purificação , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Carga Viral/genética , Replicação Viral/genética
8.
PLoS Negl Trop Dis ; 11(4): e0005532, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28388650

RESUMO

Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that emerged in the late 1990s in Malaysia and has since been identified as the cause of sporadic outbreaks of severe febrile disease in Bangladesh and India. NiV infection is frequently associated with severe respiratory or neurological disease in infected humans with transmission to humans through inhalation, contact or consumption of NiV contaminated foods. In the work presented here, the development of disease was investigated in the African Green Monkey (AGM) model following intratracheal (IT) and, for the first time, small-particle aerosol administration of NiV. This study utilized computed tomography (CT) and magnetic resonance imaging (MRI) to temporally assess disease progression. The host immune response and changes in immune cell populations over the course of disease were also evaluated. This study found that IT and small-particle administration of NiV caused similar disease progression, but that IT inoculation induced significant congestion in the lungs while disease following small-particle aerosol inoculation was largely confined to the lower respiratory tract. Quantitative assessment of changes in lung volume found up to a 45% loss in IT inoculated animals. None of the subjects in this study developed overt neurological disease, a finding that was supported by MRI analysis. The development of neutralizing antibodies was not apparent over the 8-10 day course of disease, but changes in cytokine response in all animals and activated CD8+ T cell numbers suggest the onset of cell-mediated immunity. These studies demonstrate that IT and small-particle aerosol infection with NiV in the AGM model leads to a severe respiratory disease devoid of neurological indications. This work also suggests that extending the disease course or minimizing the impact of the respiratory component is critical to developing a model that has a neurological component and more accurately reflects the human condition.


Assuntos
Encéfalo/patologia , Infecções por Henipavirus/imunologia , Imunidade Celular , Pulmão/patologia , Aerossóis , Animais , Encéfalo/virologia , Linfócitos T CD8-Positivos/imunologia , Chlorocebus aethiops/virologia , Citocinas/sangue , Modelos Animais de Doenças , Progressão da Doença , Feminino , Infecções por Henipavirus/veterinária , Humanos , Pulmão/virologia , Imageamento por Ressonância Magnética , Masculino , Vírus Nipah , RNA Viral/análise , Tomografia Computadorizada por Raios X
9.
J Vis Exp ; (116)2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27768056

RESUMO

Medical imaging using animal models for human diseases has been utilized for decades; however, until recently, medical imaging of diseases induced by high-consequence pathogens has not been possible. In 2014, the National Institutes of Health, National Institute of Allergy and Infectious Diseases, Integrated Research Facility at Fort Detrick opened an Animal Biosafety Level 4 (ABSL-4) facility to assess the clinical course and pathology of infectious diseases in experimentally infected animals. Multiple imaging modalities including computed tomography (CT), magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography are available to researchers for these evaluations. The focus of this article is to describe the workflow for safely obtaining a CT image of a live guinea pig in an ABSL-4 facility. These procedures include animal handling, anesthesia, and preparing and monitoring the animal until recovery from sedation. We will also discuss preparing the imaging equipment, performing quality checks, communication methods from "hot side" (containing pathogens) to "cold side," and moving the animal from the holding room to the imaging suite.


Assuntos
Contenção de Riscos Biológicos , Laboratórios , Segurança , Tomografia Computadorizada por Raios X , Anestesia/veterinária , Bem-Estar do Animal , Animais , Modelos Animais de Doenças , Cobaias , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons
10.
Virology ; 490: 49-58, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26828465

RESUMO

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was identified in 2012 as the causative agent of a severe, lethal respiratory disease occurring across several countries in the Middle East. To date there have been over 1600 laboratory confirmed cases of MERS-CoV in 26 countries with a case fatality rate of 36%. Given the endemic region, it is possible that MERS-CoV could spread during the annual Hajj pilgrimage, necessitating countermeasure development. In this report, we describe the clinical and radiographic changes of rhesus monkeys following infection with 5×10(6) PFU MERS-CoV Jordan-n3/2012. Two groups of NHPs were treated with either a human anti-MERS monoclonal antibody 3B11-N or E410-N, an anti-HIV antibody. MERS-CoV Jordan-n3/2012 infection resulted in quantifiable changes by computed tomography, but limited other clinical signs of disease. 3B11-N treated subjects developed significantly reduced lung pathology when compared to infected, untreated subjects, indicating that this antibody may be a suitable MERS-CoV treatment.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/patologia , Pulmão/patologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Animais , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Humanos , Pulmão/virologia , Macaca mulatta , Masculino
11.
Virology ; 485: 422-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342468

RESUMO

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) continues to be a threat to human health in the Middle East. Development of countermeasures is ongoing; however, an animal model that faithfully recapitulates human disease has yet to be defined. A recent study indicated that inoculation of common marmosets resulted in inconsistent lethality. Based on these data we sought to compare two isolates of MERS-CoV. We followed disease progression in common marmosets after intratracheal exposure with: MERS-CoV-EMC/2012, MERS-CoV-Jordan-n3/2012, media, or inactivated virus. Our data suggest that common marmosets developed a mild to moderate non-lethal respiratory disease, which was quantifiable by computed tomography (CT), with limited other clinical signs. Based on CT data, clinical data, and virological data, MERS-CoV inoculation of common marmosets results in mild to moderate clinical signs of disease that are likely due to manipulations of the marmoset rather than as a result of robust viral replication.


Assuntos
Infecções por Coronavirus/veterinária , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Doenças dos Macacos/mortalidade , Doenças dos Macacos/virologia , Animais , Anticorpos Antivirais/imunologia , Biópsia , Callithrix , Chlorocebus aethiops , Modelos Animais de Doenças , Rim/patologia , Rim/virologia , Pulmão/patologia , Pulmão/virologia , Doenças dos Macacos/diagnóstico , Doenças dos Macacos/imunologia , RNA Viral/genética , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...